

Week 9

 Last week:
 Chapter 12: Synthesis of Techniques Applied to Advanced Topics
 Chapter 10: Updating GIS Databases

Week 9 Topics

Lab final

- Final project
 Schedule and parts
- Contemporary GIS issues
 - □ Trends in GIS Technology
 - □Licensing and Certification of GIS users
- Spatial tools that I use for UAS remote sensing

Lab final

- During your lab time this week
- Will have most of lab period (1 hour, 50 minutes)
- Open book

Final Project

- Written report due on the last day of classes by 5 PM
 Drop off in Snell Hall 210A
- Result should include a spatial summary or comparison of some natural resource area

Final Project Guidelines

Cover page
 Name(s) and title

- Three to five double-spaced, typed report pages
 Grammar, punctuation, spelling
- Make sure you proof read
 Minimum of two 8.5 x 11 inch maps (location & results)
 Not included in the 3-5 pages

Final Project Guidelines

- Make sure your report has the following sections labelled
 Introduction Mathema Repute Conclusion
 - Introduction, Methods, Results, Conclusion
 These are each graded separately
- What you intend to do and why it's important (Introduction)
 Set the stage for your project
 Why are you looking into this issue?
 Why should others care about this topic?

Final Project Guidelines

- How you did it (Methods)
 Describe your data
 Scale, quality
 - □Were your data a good fit for your project?
- What you found (Results)
- Relevance and implications (Conclusion)
 - Impact of your study
 - Problems and/or successes with methods
 - Recommendations
 - Regarding the issue you researched
 - For others that might do future research

Next week

- Quantum Spatial
- ArcGIS alternatives
- Final review

Trends in GIS Technology

- Open source programming and analysis software
 Python
 GEOG 462: PROGRAMMING FOR GEOSPATIAL ANALYSIS
 - GEOG 462: PROGRAMMING FOR GEOSPATIAL ANALYSIS
 R-studio
- Freely available spatial software
 QGIS

- □ Fusion, LidR, CloudCompare
- Cloud based computing and storage
 - Data Basin
 - Google Earth Engine
 - GEOG 481: DIGITAL IMAGE PROCESSING
 - Oregon Imagery Explorer
 - Box

Trends in GIS Technology

- Raster data platforms and resolution
 Increased coverage of satellite systems and return intervals
 - Unmanned aircraft remote sensing
- Increasing computing capabilities
 Processors, RAM, graphic processing cards, SSDs
- GIS software scalability
 - □ Aps can be created with ArcGIS Pro
 - □ ArcMap app could be run on a phone
- User support
 Discussion boards

Precision Forestry

- The term "precision forestry" officially appeared tin 2001
 - The 2001 UW Precision Forestry Symposium
 Precision agriculture has been around for ~ 40 years
- In contrast to precision agriculture applications,
 - forestry landscapes have
 - Trees
 - Terrain
 - □ Higher rates of disturbance
 - Chaos

GIS licensing and certification

- Disputes have arisen between the surveying, photogrammetry, and GIS professions
 - Most states have legislation stating that only surveyors and/or engineers are qualified to record and report measurements of earth's features
 - Have initiated legal challenges in several states
 Generally, these challenges have been successful: don't collect data unless you're licensed to do so
 Who is trained to collect, process, and map spatial
 - data?
 - In what capacity?

GIS community

- Has never required certification or licensing
- Very loosely organized legislative presence
 Can't compete with land surveying and engineering boards
- ASPRS was the first organization to offer a nationally recognized certification program
 Few enrollees (n = 133 2020, n = 76 2015, n = 59 2009)
- URISA started a certification program (2003)
 No exam necessary until July 2015
 Become a "GISP" after portfolio and payment submitted (n = 9892 2020, n = 7528 2017, n = 7515 2015, n = 5501 2013, n = 4716 2010)
 - 675,000 Geospatial Employees in the U.S. (2020)

NCEES

- The National Council of Examiners for Engineering and Surveying (NCEES) has a "Model Law" that identifies surveying activities:
 - □Using GIS to:
 - Determine earth's features (terrain)
 - Determining position, or using GIS to place or reset, survey control monuments or reference points
 - □ Survey license required!

How do you become a professional land surveyor?

- 1. Graduate from a four year ABET-accredited land surveying or engineering curriculum
- 2. Take and pass eight-hour Fundamentals of Land Surveying exam (50% average passing rate)
- 3. Accumulate four years of land surveying experience under the guidance of a professional land surveyor
- 4. Successfully pass a six-hour national exam (70% passing rate)
- Successfully pass a four-hour state (in Oregon) essay exam (40% passing rate)
 Most states require a two-hour exam

Most professions have licensing Defines standards necessary for competence Education

- □Internship
- □Exams

- Protects public welfare and safety
 - What many proponents of licensing reference:
 Fire hydrants
 - Emergency route mapping (police, fire, hospitals)

Control and enforcement Who makes sure that competency exists?

Is licensing/certification necessary for the GIS community?

- It depends but...
- Until a national certification program is recognized and respected, GIS users will find themselves struggling with state and federal regulatory groups, other professions, and with each other for control of GIS activities