

Week 8

Last week:

- Chapter 9: Joining and Linking Spatial and Nonspatial databases
 Chapter 13: Raster GIS database analysis
- Questions?

Next week- read:

Chapter 17: Certification and Licensing of GIS users

Week 8 Topics

- Grading and Final project
 Schedule
- Chapter 10: Updating GIS Databases
- Chapter 12: Synthesis of Techniques Applied to Advanced Topics
- GIS Lab 8
 More work with raster data
 Watershed delineation

Grading

- 200 points total
- You can check the FE 257 WWW site to get your current grade
- 100 points for weekly assignments
 Includes abstract for project
 Keep all your graded assignments
- 50 points for term project
- □ 50 points for 3-5 page write-up
- 50 points for exams
 - □ 2 exams (40 points)
 - 1 lab final (10 points)

Term Project

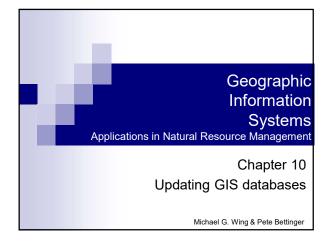
- Report due last day of classes at 5 PM
- Result should include a spatial summary or comparison drawn from a forestry or natural resource context
- Take it to Snell Hall 210A
 There will be a box for projects

Term Project Guidelines

- Three to five double-spaced, typed pages
- Cover page (not included in 3-5 page count)
- Five sections:
 - □ Introduction: What you intend to do
 - Methods: How you did it, quality of your data
 - □ Results: What you discovered
 - □ Conclusion:
 - Primary results and why it matters
 - Problems and/or successes
 - $\hfill\square$ Minimum of two 8.5 * 11 inch maps (location &
 - results)
 - In addition to the 3-5 typed pages
- Please don't put in plastic or other cover!

Getting a layout figure into Word or PowerPoint

- Go to the Share tab
 - Choose Layout Export
 - Choose the EMF (encapsulated Windows metafile format) or another compatible format
 - Write the *.emf file to your work directory
 Go to the insert menu in Word or PowerPoint and choose the Picture, From File option
 - Select your *.emf file and it will be imported into your document



Word, PowerPoint, and ArcGIS

- You may have to crop the *.emf within Word or PowerPoint to get exactly what you want
- ALWAYS look at your product at least once before a PowerPoint presentation
- The guideline: One (1) PowerPoint slide per minute of presentation

Next week

Lab final
 During your lab time
 Two hours to complete
 Open book

Chapter 10 Objectives

- Why GIS databases need to be periodically updated and maintained
- What issues might be associated with an update process
- What GIS processes could be used to physically update a database

GIS databases are rarely static

Particularly in forestry and natural resources
 Vegetation change due to time disturbances and no

- Vegetation change due to time, disturbances, and management activities
- Roads and trails are built and are sometimes obliterated
- Stream conditions and structure changes
- GIS databases should be updated periodically to reflect changes that occur in resources over time
- Either the spatial locations, the attributes of the locations, or both will require updating
- The question is how often and thoroughly a database should be updated

Process A	Process B	Process C
Digitize an Area from an orthophoto	Shared shapefile	Collect GPS data for an area
Erase overlaps using corporate database	Erase overlaps using corporate database	Edit spatial features (e.g., remove multipath)
Attribute the new spatial features	Select and copy shapefile features	Select features to be updated
Update corporate database	Paste new features into corporate database	Add GPS features into corporate database
	Attribute the new spatial features	Attribute the new spatial features

GIS database updates

- Many organizations have developed processes and protocols to guide database updates
- The update interval is the
 - □ May range from hours to years
 - □Will depend on organizational resources and database analysis goals

Organizational resources and goals

- Updates require investments of time and personnel
- If the goal of a forest management company is to generate revenue for stockholders
 - □ timber resources should be updated more frequently than other resources, such as hiking trails
 - □ updating resources such as roads, streams, and culverts may or may not be important
- In addition to determining the update interval, organizations will also need to determine what features are involved

Table 10.2. Inputs and process that canbe used to assist a GIS database update.

Input: Digital photographs	
Hand-drawn maps	GPS features
Tabular databases	Field notes
A person's memory	GIS features developed by field personnel
GIS processes:	
Digitize	Scan
Join	Update
Link	Copy / paste
Import	Attributing
Querving & verification	Overlay

Annual Update Example

- Example: A forest management company in Florida has decided to update its forest stand inventory annually- why?
 - $\hfill\square$ This stand inventory is perhaps the most important
 - Most corporations require an annual estimate of the value and volume of corporate holdings for tax and planning purposes
 - Given the relatively short rotation that is typical of industrial forests in the south, a longer update interval may not be sufficient
 - A shorter update interval will lead to increased costs and may add confusion among field foresters if databases change too often

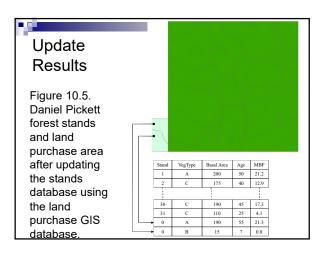
Continual Update Example

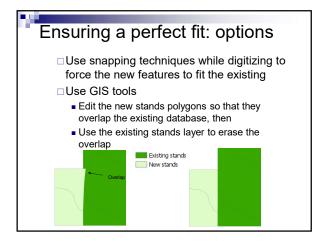
- In Washington state, all forest management plans must be submitted to the Department of Natural Resources (DNR) for review and approval
 - □ A map must accompany the plan
 - Must show the relation of the proposed activities relative to the landscape and any surrounding stream systems
 - The DNR provides a statewide streams database for mapping purposes

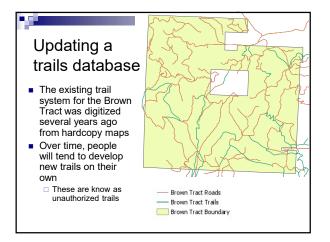
Updating a streams database

- The DNR streams database is continuously updated as new information becomes available
- A land owner that surveys a stream and notes changes from the DNR streams database can submit a change request
- The DNR has a review protocol for change requests
 Requests are either denied or approved
 Approved requests will be used to update the streams database
- Although several months or more may elapse in the reporting, review, and update process, this is considered a continual update since

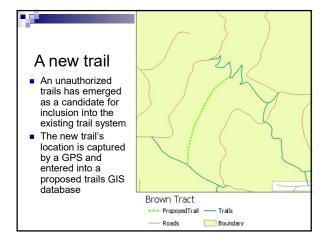
Updating existing GIS databases with new landscape features

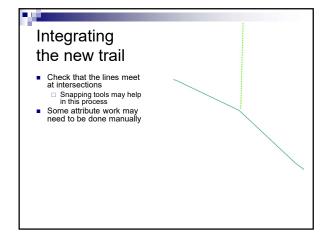

- Example 1: A land purchase results in the addition of two stands into an existing GIS database
- Example 2: Incorporating a new trail into a GIS database
- Both examples assume:
 - □ The new features were either digitized or measured with a GPS or other equipment and are available in a GIS database
 - □ The new features are initially stored separately from the existing resource database

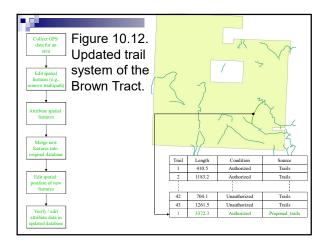

Two new stands			5	2 Ga	
 The owners of the Daniel Picket have purchased 80 acres (30.4 ha) 		New sta			
adjacent to current land sta holdings 1 2	nd Acres 42.6 37.4	Vegetation type A B	Basal area 190 15	Age 55 7	MBF 21.3 0.8


Three options for updating

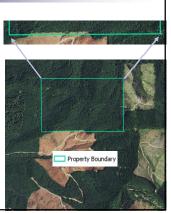
- Digitize the shape of the two stands into the existing stands database
 - □ Will require a manual entry of attribute data
- Use a merge process to combine the newly digitized stands into the existing stands database
 - In Must ensure a perfect fit between the common edges of the new stands and existing stands databases
- Use the new stands layer and update command (ArcGIS Tool)
 - Best chance of a good fit between databases





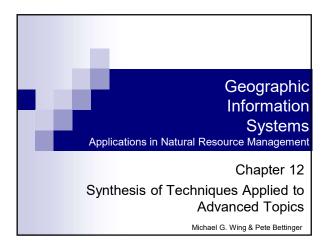


Updating a GIS database by modifying existing landscape features and attributes


- This implies that we physically alter existing databases rather than previous examples where we created a separate database to capture changes
- Some danger in damaging the existing database □ Make a copy
- May be difficult to detect and correct any mistakes unless processing steps have been carefully documented
- An examples: using a digital orthophotograph quadrangle (DOQ) to update position

Digital Orthophotograph Quadrangles (DOQs)

- Given that the projection of a DOQ exactly matches that of your existing databases, you can use DOQs to judge database accuracy in representing resources
- If the DOQ and is of sufficient quality, you can use it to create update information
 You can digitize point, line, and polygon features directly from the DOQ
- DOQs are very common
 - Oregon Imagery Explorer
 https://imagery.oregonexplorer.info/


Boundary Issue

- Property boundary being displayed on OSIP DOQ
- Reveals that either the boundary database has an error or that a harvesting operation was incorrectly located

Uncertain boundary can be adjusted

- Use the DOQ as a guide to adjust the vertices along the boundary database to match the DOQ line
- If precision and accuracy are an issue, you may want to capture the boundary location through a property boundary survey
 Total station or survey GPS measurements
- Updates to the boundary database may impact other databases

Chapter 12

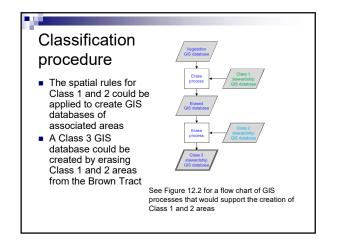
- Builds on the tools and techniques that were introduced in chapters 5-11
- Wraps them into three applied problem examples
 - Land classification
 - Recreation Opportunity Spectrum
- Habitat suitability model with a road edge effect
 Demonstrates how techniques from previous
- chapters can be used in applied settings

Land classification

- Land classifications have many purposes in forestry and natural resource management
 - Framework for assessing management opportunities
 Provide policy direction and implementation
 - Knowing what resources are available and where
- Land classifications are generally based on land characteristics that can be seen and measured
- Most natural resource organizations establish their management plans within a land classification framework

Land classifications for membership

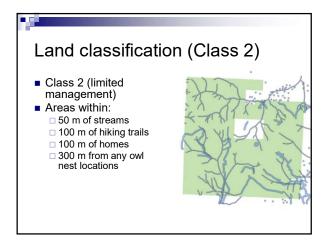
- Land classifications may also be a requirement for stewardship programs
- The American Forest & Paper Association (industrial forest organizations mainly) requires that members comply with the Sustainable Forestry Initiative (SFI)


Oregon State Forest Land Classification System

- Three main categories organized into an order of precedence
 - General stewardship Most silvicultural and operational activities allowed
 - Focused stewardship · A limited set of management activities allowed
 - Can't be reclassified as general Special stewardship

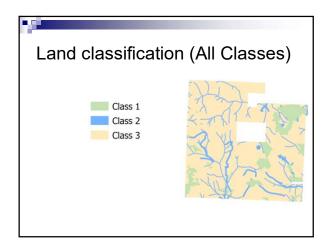
- Very few forest management activities allowed
 Can't be reclassified as focused or general
- Categories can't overlap spatially
 - This implies that GIS database development should start with the most restrictive category (Special stewardship) and work toward the most general
 - May need a series of query, buffer, clip, and erase operations to get to the final land class

Land classification: Brown Tract


- Class 1: (reserved) areas will contain meadows, research areas, rock pits, and oak woodlands.
- Class 2 (limited management) will be those areas of land that are within 50 m of streams, 100 m of hiking trails, 100 m of homes, and 300 m from any owl nest locations.
- Class 3 (general management) areas are assumed to contain land that remains after class 1 and class 2 management areas have been delineated.

Land classification (Class 1)

 Class 1: (reserved) areas will contain meadows, research areas, rock pits, and oak woodlands.



Land classification (Class 2)

 Class 2 (limited management)

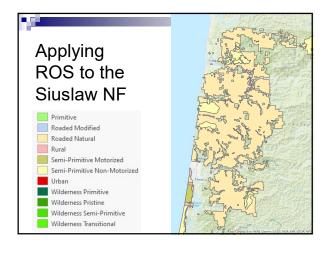
after combining buffers and removing Class 1

Recreation Opportunity Spectrum

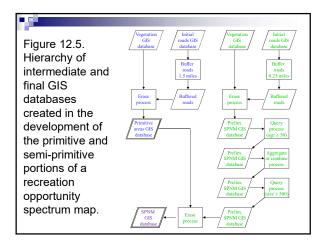
- Developed by the USDA Forest Service (Clark and Stankey 1979) as a tool for:
 - $\hfill\square$ for integrating these activities with other land uses
- The ROS is used to describe and identify recreational settings
 - Describes the likelihood of recreational opportunities along a spectrum which is divided into several categories that combine aspects of location and remoteness
 - An opportunity is an area that may yield certain experiences

Rules for evaluating ROS space Primitive (P) Areas of land greater than 1.5 miles from a road.

Primitive (P) Semi-primitive

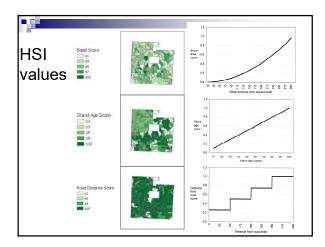

non-motorized (SPNM)

Areas of land which are greater than 0.25 miles from a road, have forest stands \geq 50 years of age, and are \geq 202.3 hectares (500 acres) in aggregate size.

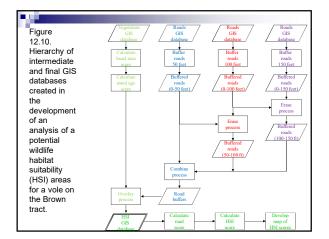

 $\begin{array}{lll} \mbox{Semi-primitive,} & \mbox{Areas of land which are greater than 0.25 miles from a} \\ \mbox{motorized (SPM)} & \mbox{paved road, have forest stands } \geq 50 \mbox{ years of age, and} \\ \mbox{are} \geq 202.3 \mbox{ hectares (500 acres) in aggregate size.} \end{array}$

 $\label{eq:Roaded natural (RN)} Read ed natural (RN) \qquad \mbox{Areas of land with stand ages} \geq 50 \mbox{ years, and} \geq 16.2 \mbox{ hectares (40 acres) in aggregate size.}$

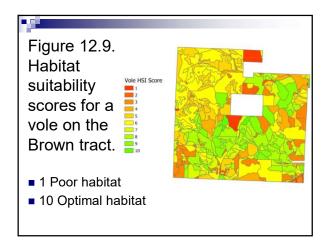
Roaded, managed (RM) Areas that do not fit into any of the other classes.


Habitat suitability model with a road edge effect

- Habitat suitability models provide managers with a glimpse into the potential of a landscape to support habitat for specific wildlife species
- These models generally take the geometric mean of two or more variables that represent or influence the occurrence and abundance of a particular wildlife species
- While some debate exists as to their usefulness and accuracy, habitat suitability models do allow managers to examine the relative quality of one area versus another with respect to a particular species


Vole habitat suitability index (HSI)


HSI = f (basal area, age, distance from roads)


- HSI calculation = (basal area score * stand age score * distance from road score) ^{1/3}
- Values must be assigned to each variable based on research, professional advice, field data, or other means

