

Week 7

- Last week:
 Spatial Projections
 Questions?
- Next week- read:
 Chapter 10: Updating GIS Databases
 Chapter 12: Synthesis of Techniques Applied to Advanced Topics

This week's topics

Mid-term

- Chapter 13: Raster GIS database analysis
- The ESRI geodatabase
- Chapter 9: Joining and Linking Spatial and Nonspatial databases

Chapter 13 Objectives

- How landscape contour GIS databases are created from a DEM;
- How landscape shaded relief GIS databases are created from a DEM;
- How slope GIS databases are created from a DEM;
- How to calculate slope gradients for a linear landscape feature, such as a road, trail, or stream;
- How to conduct a viewshed analysis for a portion of a landscape; and
- How to create a watershed boundary based on digital elevation data.

Digital Elevation Models (DEMs)

• _

- Applications
 - Watershed delineation
 - $\hfill\square$ Viewshed analysis
 - Slope analysis
 - Landscape topography or relief
- USGS makes these available for entire US
 10 and 30 m resolution
- Shuttle Radar Topography Mission (SRTM)
 30 m resolution for >80% of earth (2000)
- Chapter 13 focuses on DEM applications

"No Data" values

Why?

- The raster structure requires that all databases be stored as a set of grid cells that form a square or rectangular shape
- When landscape features don't match this regular shape, a null or No Data value can be assigned to a raster cell to indicate that no information (outside of location) is available for that cell
- No Data values default to _____ but still void other databases when processed in combination with them

Elevation contour intervals

- DEMs can create elevation contours
 - Lines that indicate constant elevation values
 Used to create a sense of topography on maps
 - □Usually a vector data structure
- User will need to select an elevation interval and have the option to set a starting elevation

Shaded relief maps

- Intended to simulate the sun-lit and shaded areas of a landscape, given that the sun is positioned at a particular location in the sky
- The brightness or shading defaults to a gray tone
- Bright features indicate features that face the sun
- Shaded relief mapping is useful for illustrating topography and provides a three-dimensional perspective of the landscape

Slope maps

- Slope, or gradient, describes the change of a landscape
 - □ Flow of people, water, or vehicles over a landscape
- Since DEMs contain both horizontal (coordinate) and vertical (elevation) information, they can be used to create slope maps

Slope value calculation

 Computed differently depending on the GIS package

- Many GIS packages look at each cell and the 8 neighboring cells when calculating a slope
 - Other neighborhood patterns and searches are possible

1	2	3
302 m	300 m	298 m
4 290 m	293 m	5 295 m
6	7	8
287 m	288 m	290 m

Figure 13.8. **Brown Tract** slope class GIS database created from a 10 m DEM. ≤5.71 ≤21.8 ≤8.53 ≤30.96 ≤11.3 ≤45 ≤14.04 ≤90 Brown Tract ≤5.71 ≤8.53 Slope (degrees) ≤11.3 ≤ 1.72 ≤3.43 ≤ 16.7

Interaction of raster and vector databases

- Some GIS packages can simultaneously analyze raster and vector databases
- This ability should increase in sophistication in the future

Two examples:

- Slope characteristics of land management units
- Examination of the slope class characteristics of streams

Forest stand slopes

- Task: calculate slopes in support of a forest thinning operation
- Slopes will help define what type of groundbased equipment (skidder, harvester, or forwarder) might be appropriate or whether a cable-based logging system is needed for highly sloped areas
- Crews could occupy the management units with clinometers or other surveying equipment
- Or a DEM could be used

Process: Slope characteristics of land management units

- Stand units (polygons) are draped on a DEM (raster)
 - DEM cell values within each polygon are aggregated to give DEM values for all polygons

Table 13.1. Output of percent slope values for management units.

[Stand	Count	Area	Min	Max	Range	Mean	Std	Sum
	1	319	343603	0.11	15.44	15.33	5.31	3.81	1692.78
	2	2186	2354595	0.34	23.55	23.21	9.41	3.76	20564.20
Ī	3	770	829386	0.44	22.46	22.02	10.22	4.15	7866.61
ſ	4	2884	3106428	0.28	23.01	22.73	9.54	3.66	27521.07
[5	533	574107	1.71	19.80	18.09	8.34	3.14	4446.68
ſ	6	1195	1287164	0.44	23.72	23.28	8.51	4.24	10168.51
ſ	7	338	364068	0.20	15.15	14.95	6.20	3.52	2096.76
[8	2494	2686349	0.15	26.11	25.95	13.65	4.27	34040.15
ſ	9	337	362991	3.20	25.41	22.21	15.03	3.91	5066.74
	10	2395	2579714	1.55	24.25	22.70	11.52	3.90	27591.07
Count = number of 10 m grid cells Area = square feet Mean = average slope Min = minimum value in the database Std = standard deviation of slope									

Count = number of 10 m grid cells	Range = (max value - min value)
Area = square feet	Mean = average slope
Min = minimum value in the database	Std = standard deviation of slope
Max = maximum value in the database	Sum = sum of the slope for all units

Stream slope calculation

- Task: determine slope for watershed streams Understand implications of large rainfall
 - Support for fish populations
- Crews could occupy the streams with clinometers or other surveying equipment
- Or a DEM could be used
- One twist: the slope values surrounding the streams are not of interest
 - □ Solution: create a stream elevation database from the stream vector layer

Other DEM-based analyses

- Viewshed analysis
 - by others on a landscape?
- Watershed delineation
 Where are the drainage boundaries?

Viewshed analysis

- May be an important tool for land managers interested in being a good neighbor
 - Consider limiting some operations to places of low relative visibility
- May also be an important tool for structure locations
 - □ Fire lookout towers
 - Wind turbines

Watershed delineation

- A watershed is an area that shares a common _____
 - Where water would leave a landscape area according to slope conditions
- Watershed delineation was once done almost exclusively with the aid of hardcopy topographic maps
 - □ Contour line shape provided topographic clues

ESRI Data Formats

ArcInfo Coverage (1980s)

- Interchange file, e00 file, cover
 The original vector data format
- The original vector data format
 Used for both vector and raster structures
- ESRI shapefiles
 - Created for ArcView (1990s)
 - Could only handle vectors
- Geodatabase

- Designed for ArcGIS (2001)
- □ Vector, Raster, and other structures
- Personal (MS Access) and RDMS (Oracle, SQL Server, Informix, DB2)

The Geodatabase

- A container for many structures
 - CAD

- □Raster
- □ Shapefiles
- □ Coverages
- □Non-spatial attribute tables
- Designed to centralize the storage of all data for a GIS

Geodatabase Storage: 3 types

- File geodatabase (most recent)
 TTB limit
 - $\Box\operatorname{\mathsf{All}}$ databases in a folder (with a .gdb extension)
- Personal geodatabase
 Microsoft Access (.mdb extension)
 2GB limit (Rasters stored separately)
- Enterprise geodatabase
 Stored in a RDBMS, requires ArcSDE
 Virtually not limited in size
- All use same ArcGIS tools

Feature Datasets • Containers for feature classes of the same spatial reference Behave like folders in Catalog View Points, lines, polygons and other features can be stored ⊕ ⊕ ⊕ ⊕ ℝ → Project + Databases → Chapter13_LectureUpdat Name Type □ Contract30 File Gendatabase Feature Class ■ Hothora Jorden File Gendatabase Feature Class ■ Hothora Jorden File Gendatabase Feature Class ■ Hothora Jorden File Gendatabase Feature Class ■ Basepartment Patter Dataset within a feature dataset tes.gdb Date Benton County Roads Streams □ Urban growth boundaries 🖼 stands_Union File Geodatabase Feature Clas Census Data Wiewshe_Dem_1 Raster Dataset B Viewshe_Dem_ DOQs Survey Benchmarks

Creating Geodatabases

Catalog view

- The centralized data management utility
- Importing data
 - Tables and shapefiles
- CASE tools
 - Computer Aided Software Engineering
 - Microsoft Visio or Rational Rose
- Geoprocessing tools in ArcGIS
 - ArcGIS Pro Tools
 - ModelBuilder
 - Scripts (Python is ESRI's choice)

Geodatabase Exchange

- File and personal geodatabase
 Share the parent folder or .gdb/.mdb
 Rasters will involve additional files/folders
- All geodatabase versions

□Use XML

- Extensible Markup Language
- Can export and import entire geodatabase contents
- A safer method that ensures all parts of a geodatabase are received or transferred

Chapter 9 Objectives

- How two or more databases can be temporarily joined without creating a new database, modifying a database table, or modifying landscape features;
- The GIS processes that are available when there is a need to join data;
- How non-spatial data can be joined with spatial databases
- How two spatial databases can be joined; and
- What it means to relate (link) two tables, and how this process is different than joining databases.

Join and relate processes

- Processes in chapters 6-8 introduced operations (e.g erase, clip, buffer, combine) that led to the creation of a new and permanent database
- Join and relate brings spatial and nonspatial databases together in a temporary manner that doesn't change the original databases
- The goal of both join and relate is bring data from two databases into the perspective of a single database
 - Data from two sources is being brought together

Join and relate definitions

- The join and relate processes both require that a common attribute be present in both databases
- When two databases are joined, the visual affect is as if the databases are physically joined (they appear as one database)
- When two databases are related, no physical link appears to exist yet records selected in one of the databases (either through attribute or spatial queries) will also be selected in the related database

Joining non-spatial data to spatial

"Stand", "HSI1", "HSI2", "HSI3" 1, 0.256, 0.312, 0.325 2, 0.458, 0.495, 0.516

3, 0.333, 0.365, 0.372 4, 0.875, 0.885, 0.889

Why?

- Bring data in from another application or process
- □ Field data collection
- Results from other software
- Changes in attribute values

Joining non-spatial data to spatial

Several possibilities exist

One-to-one

Assumes that there is a direct match between all records in both databases

□ One-to-many

Each record in source database may match with more than one record in the destination database

□ Many-to-one

- Two or more records in the source database may match up with a single record in the destination database
- Can also have many-to-many

Relating (linking) databases

 Relating keeps databases visually separate but records selected in one database will also be selected in the linked database

Geoproce	ssing	* # X
€	Add Relate	\oplus
Parameters	Environments	(?)
Layer Nam	e or Table View	
streams		- 🗃
Input Relat	e Field	
SIZE		
Relate Tabl	e	
stream_up	odate	- 😑
Output Rel	ate Field	
SIZE		•
Relate Nan	1e	
Stream up	date	
Cardinality		
One to m	any	

 This may help you by reducing the visual size and dimensions of databases you want to bring together

Joining two spatial databases

- With spatial joins, the objective is to use the spatial locations of database features to guide database associations
- This is a powerful GIS capability
- In ArcGIS Pro, a new layer is created from a spatial join
- Some limitations for the type of features (point, line, or polygon) that can be spatially joined
 Can't perform a nearest feature operation on two
 - polygon databases

Spatial join possibilities

- Finding the nearest feature
- Finding what's inside a polygon
- Finding what intersects a feature
- Many others

ntersect
ntersect 3D
Vithin a distance geodesic
Vithin a distance
Vithin a distance 3D
ontains
completely contains
ontains Clementini
Vithin
completely within
Vithin Clementini
re identical to
oundary touches
hare a line segment with
crossed by the outline of
lave their center in
losest geodesic

Unknowr Unkno

