Introduction

Instructor Information

- Associate Professor in FERM Department
- Instructor for FE 257, FE 480, FE 432/532
- PhD from Forest Resources with minor in Geography at OSU
 - Professional Land Surveyor
 - Professional Engineer
- GIS/Spatial tools experience at OSU, public agencies, private sector (USFS, ODFW, USFWS, DOE, USU, CH2M HILL)
- My experience with course learning at OSU

This Week’s Topics

- Course mechanics
 - Lecture and lab materials
- Grading
- Class Format
- Assignments
- What is a GIS?
- Brief GIS history
- GIS Lab 1: Calculating Stream Lengths and Watershed Areas.
Course Mechanics

- Time:
 - Lecture MW 12:00-12:50 LINC 210
 - Five labs

- Office: Crop Science 347
 - Office hours: Monday 1:00-3:00
- Make it to class and be on time

Course Materials

- The text
 - Available at the OSU bookstore

- Lectures and labs
 - Lecture notes and labs available at the course WWW site:
 - http://fe257.forestry.oregonstate.edu
 - Print these out prior to the start of lecture and lab and bring them with you
 - I will provide these to you only today
 - Buy a three-ring binder (minimum 1.5 inch spine) to store course materials

Grading

- Weekly Exercises (50%, 100 pts, 8)
 - GIS labs
 - Lecture questions
 - Lab and lecture questions in your materials

- Final Project (25%, 50 pts)
 - Report with maps
 - Encourage you to find and develop a project
 - I’ll help you find one if needed

- Exams (25%, 50 pts, 3)
 - Mid-term and final
 - One lab-based
Class Format

- GIS principles
 - Occasional demonstrations
- Guided and self-guided GIS exercises in labs
- Some labs will have brief time at the end for you to work on the weekly lab assignment

Course learning objectives

- An understanding of GIS fundamentals and theory and an ability to apply these concepts in problem solving.
- The ability to create thematic maps.
- Familiarity with advanced GIS operations and the ability to use these techniques.
- The ability to import data of different structures and to use these data to solve problems.
- The ability to import data of different cartographic projections and to use these data to solve problems.
- The ability to communicate with others in writing and orally regarding GIS applications.
- The ability to design and complete a spatial analysis.

What will I learn?

- An overview of GIS
- How GIS data are captured, stored, retrieved, analyzed & displayed
- Where to go for more information
- GIS software and its functionality
- How to use ArcGIS for GIS applications
- Questions?
Chapter 1 Objectives

- Why GIS use is prevalent in natural resource management
- Evolution of the development of GIS technology and key figures
- Common spatial data collection techniques and input devices that are available
- Common GIS output processes that are typical in natural resource management
- The broad types of GIS software that are available.

What is a GIS?

- Multitude of definitions and applications are possible
- Geographic Information System(s)
 - GIS provides tools for solving specific problems related to spatial data
- GIS can also be an acronym for GIScience
 - the identification and study of issues that are related to GIS use, affect its implementation, and that arise from its application (Goodchild, 1992)
GIS Definitions

- There are various definitions of a GIS that have evolved from different uses and disciplines.
- A GIS minimally consists of a database, location information, and a digital link between them.
 - Or, a digital connection that tells us where something is and what it is.
- Most GIS definitions identify the nature of geographic or spatial data in making distinctions from other software programs.

Non-spatial and spatial data

<table>
<thead>
<tr>
<th>River</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nehalem</td>
<td>258761</td>
</tr>
<tr>
<td>N. Santiam</td>
<td>128433</td>
</tr>
<tr>
<td>Rogue</td>
<td>194839</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>424210</td>
<td>1244292</td>
</tr>
<tr>
<td>2</td>
<td>456889</td>
<td>1238951</td>
</tr>
<tr>
<td>3</td>
<td>446867</td>
<td>1230064</td>
</tr>
<tr>
<td>4</td>
<td>440157</td>
<td>1241338</td>
</tr>
</tbody>
</table>

GIS Applications

- The digital mapping capabilities of GIS allows us to examine landscapes in ways that would be impossible or nearly impossible with other tools.
- GIS capabilities that benefit natural resource applications include:
 - Resource mapping
 - Measurements of landscapes or structures
 - Overlays or integration of multiple information layers
 - Modeling resources
GIS and Forest Engineering Applications

Resource Mapping

Owl Nest Locations and Ownership Patterns

Landscape / Structure Measurements

Overlays or Integration of Themes
Brief GIS history

- Written records of property boundary locations date to 1400 BC
- The term "geographic information system" dates to the 1960s
- Many associate overlay analysis with modern day GIS

Figure 1.1. GIS theme overlay.
Overlay analysis history

- The integration of multiple sources of information
- Demonstrated manually in 1854 by Dr. John Snow in his isolation of cholera sources in London
- Demonstrated again:
 - 1954, Jacqueline Tyrwhitt, Town & Country Planning Text Book
 - 1969, Ian McHarg, Design with Nature
- Wouldn’t it be great to do this digitally?
 - The origin of modern day GIS…

GIS history

- 1960s saw the development of spatial databases of land cover
 - USGS, US NRCS
- Mapping programs began to appear
 - IMGRID, CAM, SYMAP
- CIA produces World Data Bank
 - Coastlines, major rivers, political borders throughout the world
- US Census Bureau produces method for linking census information to locations for the 1970 census
 - Based on respondent addresses

GIS history

- Roger Tomlinson drives the creation of the Canada Geographic Information System (CGIS) in 1964
 - First national GIS system
- Land Use and Natural Resource Inventory System
 - LUNR, New York 1967
- Minnesota Land Management System
 - MLMIS, Minnesota 1969
GIS history

- The genesis of ArcGIS: Odyssey
 - Produced by Harvard University in 1977
 - Graduate student Jack Dangermond worked on Odyssey
- ArcInfo introduced in 1981
 - First major commercial GIS venture
- MapInfo corporation appears in 1986
- The personal computer concept progresses during the 1980s and becomes standard during the 1990s

Why GIS and natural resources?

- The origins of modern day GIS are with initial databases that described natural resource conditions
 - CGIS LUNR MLMIS
- Managing natural resources is a complicated business and GIS is particularly well suited as a mapping and analytical tool to support management decision-making
 - Spatial considerations are paramount for natural resource monitoring and management
- Software and hardware developments have brought GIS to the desktop of many natural resource personnel
 - Many employees now need to be at least conversant about GIS and related technology
- Technological developments (GPS, LiDAR, Satellite imagery) make spatial data availability much more affordably and readily than in the past
- Educational opportunities for GIS and related tools training is now widely available

Before class next week…

- Buy book
 - Read Chapters 1, 2, and 4 prior to next week
- Download
 - Lecture 2 notes
 - Lab 2 notes